3.5 Friction losses in pipes and fittings

3.5.1 Pipes

When water flows through a pipe the friction between the wall of the pipe and the water slows the water down and uses up some of its energy, such that a loss of head ΔH (normally denoted H_{f}) along the pipe results which relates to the pipe diameter d and length l and the free stream velocity v by the Darcy-Weisbach equation:

$$
\begin{equation*}
H_{f}=\lambda \frac{l}{d} \frac{v^{2}}{2 \mathrm{~g}} \tag{3.9}
\end{equation*}
$$

where λ is the Darcy-Weisbach friction factor, and depends on the surface roughness, κ, and the Reynolds number. It also usual practice to define the head loss per unit length of pipe $(\Delta H / l)$ as the hydaulic gradient, s, so that the above equation becomes:

$$
\begin{equation*}
s=\frac{\lambda}{d} \frac{v^{2}}{2 \mathrm{~g}} \tag{3.10}
\end{equation*}
$$

where λ can be obtained most accurately from Moody diagrams, derived from the Colebrook-White equation. The Colebrook-White equation is not readily employed directly, but several simplifications exist - including the Swamee-Jain approximation:

$$
\begin{equation*}
\lambda=\frac{0.25}{\left[\log \left(\frac{\kappa}{3.7 d}+\frac{5.74}{\mathrm{Re}^{0.9}}\right)\right]^{2}} \tag{3.11}
\end{equation*}
$$

where pipe roughness (κ) takes units of length and typical values are given in Table 7. Under highly turbulent conditions, i.e. when $5.74 / R e^{0.9} \ll \kappa / 3.7 D$, the second term in the denominator of Equation 3.11 disappears and the expression simplifies to:

$$
\begin{equation*}
\lambda=\frac{0.25}{\left[\log \left(\frac{\kappa}{3.7 d}\right)\right]^{2}} \tag{3.12}
\end{equation*}
$$

Table 7: \quad Pipe roughness values in mm

Pipe characteristics	$\kappa(\mathrm{mm})$
New plastic and non-ferrous	0.03
Spun bitumen or cement lined ductile iron	0.05
Steel (uncoated)	0.05
Good ductile or cast iron	0.05
Galvanised steel	0.15
Precast concrete	0.15
Tuberculated water mains up to 20 years old	$1.5-15$
Tuberculated water mains up to 50 years old	$0.3-30$

